3 resultados para FIV

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Initiation of minus (-) strand DNA synthesis was examined on templates containing R, U5, and primer-binding site regions of the human immunodeficiency virus type 1 (HIV-1), feline immunodeficiency virus (FIV), and equine infectious anemia virus (EIAV) genomic RNA. DNA synthesis was initiated from (i) an oligoribonucleotide complementary to the primer-binding sites, (ii) synthetic tRNA(3Lys), and (iii) natural tRNA(3Lys), by the reverse transcriptases of HIV-1, FIV, EIAV, simian immunodeficiency virus, HIV type 2 (HIV-2), Moloney murine leukemia virus, and avian myeloblastosis virus. All enzymes used an oligonucleotide on wild-type HIV-1 RNA, whereas only a limited number initiated (-) strand DNA synthesis from either tRNA(3Lys). In contrast, all enzymes supported efficient tRNA(3Lys)-primed (-) strand DNA synthesis on the genomes of FIV and EIAV. This may be in part attributable to the observation that the U5-inverted repeat stem-loop of the EIAV and FIV genomes lacks an A-rich loop shown with HIV-1 to interact with the U-rich tRNA anticodon loop. Deletion of this loop in HIV-1 RNA, or disrupting a critical loop-loop complex by tRNA(3Lys) extended by 9 nt, restored synthesis of HIV-1 (-) strand DNA from primer tRNA(3Lys) by all enzymes. Thus, divergent evolution of lentiviruses may have resulted in different mechanisms to use the same host tRNA for initiation of reverse transcription.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The infectivity and replication of human (HIV-1), feline (FIV), and murine (LP-BM5) immunodeficiency viruses are all inhibited by several nucleoside analogues after intracellular conversion to their triphosphorylated derivatives. At the cellular level, the main problems in the use of these drugs concern their limited phosphorylation in some cells (e.g., macrophages) and the cytotoxic side effects of nucleoside analogue triphosphates. To overcome these limitations a new nucleoside analogue homodinucleotide, di(thymidine-3'-azido-2',3'-dideoxy-D-riboside)-5'-5'-p1-p2-pyrophosphat e (AZTp2AZT), was designed and synthesized. AZTp2AZT was a poor in vitro inhibitor of HIV reverse transcriptase, although it showed antiviral and cytotoxic activities comparable to those of the parent AZT when added to cultures of a HTLV-1 transformed cell line. AZTp2AZT encapsulated into erythrocytes was remarkably stable. Induction of erythrocyte-membrane protein clusterization and subsequent phagocytosis of AZTp2AZT-loaded cells allowed the targeted delivery of this impermeant drug to macrophages where its metabolic activation occurs. The addition of AZTp2AZT-loaded erythrocytes to human, feline, and murine macrophages afforded almost complete in vitro protection of these cells from infection by HIVBa-L, FIV, and LP-BM5, respectively. Therefore, AZTp2AZT, unlike the membrane-diffusing azidothymidine, acts as a very efficient antiretroviral prodrug following selective targeting to macrophages by means of loaded erythrocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Feline immunodeficiency virus (FIV) encodes the enzyme deoxyuridine-triphosphatase (DU; EC 3.6.1.23) between the coding regions for reverse transcriptase and integrase in the pol gene. Here, we report the in vivo infection of cats with a DU- variant of the PPR strain of FIV and compare its growth properties and tissue distribution with those of wild-type FIV-PPR. The results reveal several important points: (i) DU- FIV is able to infect the cat, with kinetics similar to that observed with wild-type FIV; (ii) both wild-type and DU- FIV-infected specific-pathogen free cats mount a strong humoral antibody response which is able to limit the virus burden in both groups of animals; (iii) the virus burden is reduced in the DU- FIV-infected cats, particularly in tissues such as spleen and salivary gland; and (iv) the mutation frequency in DU- FIVs integrated in the DNA of primary macrophages after 9 months of infection is approximately 5-fold greater than the frequency observed in DU- FIV DNA integrated in T lymphocytes. Mutation rate with wild-type FIV remains the same in both cell types in vivo. The dominant mutations seen in macrophages with DU- FIV are G-->A base changes, consistent with an increased misincorporation of deoxyuridine into viral DNA of DU- FIVs during reverse transcription. Because this enzyme is absent from human immunodeficiency virus type 1 and other primate lentiviruses, virus replication in cell environments with low DU activity may lead to increased mutation and contribute to the rapid expansion of the viral repertoire.